reflections, phased by either $\Sigma_{2}$ or $\Sigma_{1}$ relations (and perhaps with appropriate weights), can also be included to produce peaks of greater reliability. In the centric case, those $\Sigma_{1}$ reflections which were determined with greater than $90 \%$ probability were included in the calculation of the $\Sigma_{2}$ map. Their addition improved the phase agreement to a small extent. The frequency check procedure (Gorres \& Jacobson, 1964) can be applied to the $\Sigma_{2}$-map.
It also is possible to include an additional strong reflection with the origin-determining reflections, thus producing two $\Sigma_{2}$ maps in the centric case, for example. The resulting two sets of averaged phases could then be handled in a similar way as in those direct-methods programs that produce multiple solutions.
Lower bounds other than zero can be used for modification of the resultant superposition map. Indeed, some calculations for the centric example have shown that use of a lower bound of $10 \%$ of the maximum peak height results in somewhat improved agreement.
From Tables 2 and 3, it is obvious that a straight average is a poor procedure compared with a more judicious method of averaging. Preliminary computations indicate that in the centric case a requirement of a net of two like signs produces a significant improvement in the percentage of correct signs selected.

The phases are also somewhat sensitive to grid point resolution of the maps. In the centric structure, calculations were run using a grid of $0.12 \times 0.45 \times 0.45 \AA$ resolution. Results improve if a resolution of approximately $0.25 \AA$ is used in all three directions.

Squaring the resultant superposition map appears to give the best phases compared with other powers which could be employed. All exponents from 0.2 to 6.6 in steps of 0.2 were examined for a typical run, with 2.0 appearing the most satisfactory.

## Conclusion

We feel that these results demonstrate the effectiveness of an approach which utilizes advantages of both direct and Patterson methods and in doing so avoids many of their limitations.

## References

Barrett, A. N. \& Zwick, M. (1971). Acta Cryst. A 27, 6.

Buerger, M. J. (1959). Vector Space and its Application in Crystal Structure Investigation. New York: John Wiley. Gorres, B. T. (1964). Thesis, Princeton University.
Gorres, B. T. \& Jacobson, R. A. (1964). Acta Cryst. 17, 1599.

Hackert, M. L. \& Jacobson, R. A. (1971). Acta Cryst. B27, 203.
Hubbard, C. R. \& Jacobson, R. A. (1969). Report IS-2210, Ames Laboratory, Ames, Iowa.
Hubbard, C. R., Quicksall, C. O. \& Jacobson, R. A. (1972). J. Appl. Cryst. 5, 234.

Karle, I. L. \& Karle, J. (1966). Acta Cryst. 21, 849.
Main, P., Woolfson, M. M. \& Germain, G. (1971). multan: A Computer Program for the Automatic Solution of Crystal Structures.

# The Crystal Structure of Magnesium Chlorophosphate, $\mathbf{M g}_{\mathbf{2}}\left(\mathbf{P O}_{\mathbf{4}}\right) \mathbf{C l}$ 

By J.R.Rea* and E. Kostiner $\dagger$<br>Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14850, U.S.A.

(Received 1 May 1972)

Magnesium chlorophosphate, $\mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$, crystallizes in the space group $\mathrm{Pna2}_{1}$, with unit-cell dimensions $a=10 \cdot 940$ (1), $b=7 \cdot 9305$ (6), and $c=4 \cdot 8008$ (4) $\AA(Z=4)$. A three-dimensional structural analysis using automatic-diffractometer data has been completed and refined by full-matrix least-squares procedures to a residual $R=0.025\left(R_{w}=0.044\right)$. The compound is isostructural with the previously reported $\mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$.

## Introduction

In a continuing investigation of the crystal chemistry of halophosphates of composition $\mathrm{M}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{X}(\mathrm{M}$ is a

[^0]divalent metal, X is a halogen) (Rea \& Kostiner, 1972a, b), we have grown single crystals of magnesium chlorophosphate $\mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$ and determined its crystal structure.
The preparation of $\mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$ has been reported (Klement \& Haselbeck, 1965) but, aside from the reported similarity of its X-ray powder-diffraction pattern to that of $\mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$, no structural work has been done.

## Experimental

Single crystals of $\mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$ were grown from excess $\mathrm{MgCl}_{2}$ in a sealed evacuated quartz ampouls. A mixture of $25 \mathrm{~mol} . \% \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and $75 \mathrm{~mol} . \% \mathrm{MgCl}_{2}$ (carefully dehydrated in HCl gas at $500^{\circ} \mathrm{C}$ ) was sealed in an evacuated ( $10 \mu \mathrm{mHg}$ ) quartz tube ( 8 mm i.ternal diameter). The sealed ampoule was placed in a resis-tance-heated furnace, heated to $1100^{\circ} \mathrm{C}$ and then cooled at $15^{\circ} \mathrm{C}$ per hr to $650^{\circ} \mathrm{C}$ where the furnace was shut off. The crystals were separated by washing with hot distilled water. Typically, crystals were lath-shaped with dimen-
sions $0.03 \times 0.05 \times 0.2 \mathrm{~cm}$; no attempt was made to maximize crystal size.

Lattice parameters from Weissenberg and precession photographs indicated that $\mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$ was isostructural with $\mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$ with space group $\mathrm{Pna}_{1}$. Accurate lattice parameters were determined in a PICK II least-squares refinement using 46 reflections within the angular range $38^{\circ}<2 \theta<56^{\circ}$; the reflections were automatically centered on a Picker FACS-I four-circle diffractometer using Mo $K \alpha_{1}$ radiation. At $22^{\circ} \mathrm{C}$ the lattice parameters are $a=10.940$ (1), $b=7.9305$ (6), and $c=4 \cdot 8008$ (4) $\AA$, where the figures in parentheses rep-

Table 1. Observed and calculated structure factors


Table 2. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and anisotropic thermal parameters $\left(\times 10^{2}\right)$
Numbers in parentheses are estimated standard deviations in the last significant figure.

|  | $x$ | $y$ | $z$ | $B_{11}$ | $B_{22}$ | $B_{33}$ | $B_{12}$ | $B_{13}$ | $B_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Mg}(1)$ | 1221 (1) | 986 (1) | ${ }^{\frac{1}{2}}$ | 48 (3) | 69 (3) | 79 (4) | -1 (2) | 2 (3) | 7 (4) |
| $\mathrm{Mg}(2)$ | 3721 (1) | 1629 (1) | 9927 (3) | 69 (3) | 66 (3) | 69 (4) | -6 (2) | -15 (3) | 10 (4) |
| P | 3337 (1) | 3797 (1) | 5460 (3) | 51 (3) | 41 (2) | 37 (2) | -3(1) | 3 (2) | 6 (3) |
| Cl | 626 (1) | 3780 (1) | 2410 (3) | 81 (3) | 91 (2) | 135 (3) | -10(1) | -39 (2) | 7 (2) |
| $\mathrm{O}(1)$ | 2302 (2) | 395 (2) | 1529 (5) | 96 (6) | 62 (5) | 86 (7) | -13 (5) | 4 (6) | -11 (6) |
| $\mathrm{O}(2)$ | 3478 (2) | 3804 (2) | 2308 (5) | 92 (7) | 57 (7) | 30 (7) | 4 (4) | 2 (6) | 6 (4) |
| $\mathrm{O}(3)$ | 4583 (2) | 3770 (2) | 7055 (6) | 58 (6) | 137 (8) | 89 (8) | -7 (4) | -21 (6) | 4 (5) |
| $\mathrm{O}(4)$ | 2665 (2) | 2220 (2) | 6522 (5) | 81 (6) | 64 (6) | 81 (6) | -15(5) | -8(5) | 24 (6) |

resent the standard deviations in the last reported figure. The calculated density, with $Z=4$, is 2.855 g. $\mathrm{cm}^{-3}$ and the measured density (flotation) is $2 \cdot 852$ (4) g. $\mathrm{cm}^{-3}$.

A small ( $R \sim 0.015 \mathrm{~cm}$ ), reasonably isotropic crystal was chosen for data collection. Diffraction intensities were measured using Zr -filtered Mo $K \alpha$ radiation at a take-off angle of $2 \cdot 5^{\circ}$ with the diffractometer operating in the $\theta-2 \theta$ scan mode. Scans were made at $1^{\circ}$ per min over $1.5^{\circ}$ with allowance for dispersion, and with 40 sec background counts taken at both ends of the scan. Of the 799 independent data investigated in the angular range $2 \theta<64^{\circ}$, a total of 784 were considered observable according to the criterion $\left|F_{o}\right|>0.675 \sigma_{F}$, where $\sigma_{F}$ is defined as $0.02\left|F_{o}\right|+\left[C+k^{2} B\right]^{1 / 2} / 2\left|F_{o}\right| \mathrm{Lp}$; the total scan count is $C, k$ is the ratio of scanning time to the total background scanning time, and $B$ is the total background count. Three reflections were systematically monitored, and since there was a significant drop in intensities during the last part of the data collection period, a second scale factor applicable to the last 63 data collected was included in the refinements. The maximum random deviations in intensity were less than $3.5 \%$. The intensity data were corrected for Lorentz and polarization effects. No absorption correction was made, since the linear absorption coefficient was small ( $\mu=15 \mathrm{~cm}^{-1}$ ).

## Refinement of the structure

Least-squares refinement (Busing, Martin \& Levy, 1962) using the atomic positions reported for $\mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$ as a starting point with a $1 / \sigma^{2}$ weighting scheme, zerovalent scattering factors (Cromer \& Mann, 1968), isotropic temperature factors, and corrections for secondary extinction and anomalous dispersion, yielded a residual $R=0.041$ and a weighted residual $R_{w}=0.067$ for the observed data. For the anisotropic refinement $R=0.025$ and $R_{w}=0.0444$. Since the space group was noncentric, the other enantiomorph was refined, giving $R=0.025$ and $R_{w}=0.0438$. According to Hamilton's (1965) significance test, the first cell may be rejected at the 0.005 significance level. Thus the crystal analyzed
in this study was enantiomorphous with that chosen for the $\mathrm{Mn}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$ study.

The final anisotropic refinement was based on a data: parameter ratio of 10.5 to 1 with 74 independently varied parameters. The largest extinction correction applied (Zachariasen, 1967) was $49 \%$ of $\left|F_{c}\right|$ for the 040 reflection. Calculated and observed structure factors are listed in Table 1. Table 2 presents the final atomic coordinates and anisotropic thermal parameters.

Since the two compounds are isostructural, there is no necessity to describe further the structure of $\mathrm{Mg}_{2}\left(\mathrm{PO}_{4}\right) \mathrm{Cl}$. Tables 3 and 4 report the polyhedral bond angles and distances. Standard deviations of bond lengths were computed by the function and error program, ORFFE, of Busing, Martin \& Levy (1964). The only significant difference is shorter average metalanion bond distances due to the smaller ionic radius of six-coordinated $\mathrm{Mg}^{+2}$ as compared to $\mathrm{Mn}^{+2}, 0.72$ versus $0.83 \AA$ (Shannon \& Prewitt, 1969).

Table 3. Bond distances, polyhedral edge lengths, and bond angles for magnesium atomic positions
Numbers in parentheses are estimated standard deviations in the last significant figure.
(i) Interatomic distances

| $\mathrm{Mg}(1)-\mathrm{O}(1)$ | 2.096 (2) $\AA$ | $\mathrm{Mg}(2)-\mathrm{O}(1)$ | 1.990 (2) $\AA$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Mg}(1)-\mathrm{O}(2)$ | 2.081 (2) | $\mathrm{Mg}(2)-\mathrm{O}(2)$ | 2.086 (2) |
| $\mathbf{M g}(1)-\mathrm{O}(3)$ | 2.055 (3) | $\mathrm{Mg}(2)-\mathrm{O}(3)$ | 2.382 (3) |
| $\mathrm{Mg}(1)-\mathrm{O}\left(3^{\prime}\right)$ | 2.422 (2) | $\mathrm{Mg}(2)-\mathrm{O}(4)$ | 2.056 (2) |
| $\mathbf{M g}(1)-\mathrm{O}(4)$ | 1.996 (2) | $\mathrm{Mg}(2)-\mathrm{Cl}$ | 2.422 (1) |
| $\mathbf{M g}(1)-\mathbf{C l}$ | $2 \cdot 623$ (1) | $\mathrm{Mg}(2)-\mathrm{Cl}^{\prime}$ | $2 \cdot 660$ (1) |
| $\mathrm{Mg}(1)$ octahedron |  | $\mathrm{Mg}(2)$ octahedron |  |
| $\mathrm{O}(4)-\mathrm{O}(3)$ | 3.471 (3) $\AA$ | $\mathrm{O}(4)-\mathrm{O}(3)$ | 2.445 (3) $\AA$ |
| $\mathrm{O}(4)-\mathrm{O}(2)$ | 3.007 (2) | $\mathrm{O}(4)-\mathrm{O}(2)$ | 3.176 (3) |
| $\mathrm{O}(4)-\mathrm{O}(1)$ | 2.828 (3) | $\mathrm{O}(4)-\mathrm{O}(1)$ | 2.834 (3) |
| $\mathrm{O}(4)-\mathrm{Cl}$ | 3.226 (2) | $\mathrm{O}(4)-\mathrm{Cl}^{\prime}$ | 3.335 (2) |
| $\mathrm{O}(3)-\mathrm{O}(2)$ | 2.866 (3) | $\mathrm{O}(3)-\mathrm{O}(2)$ | 2.797 (4) |
| $\mathrm{O}(3)-\mathrm{O}\left(3^{\prime}\right)$ | 3.225 (2) | $\mathrm{O}(3)-\mathrm{Cl}$ | 3.464 (2) |
| $\mathrm{O}(3)-\mathrm{Cl}$ | $3 \cdot 219$ (3) | $\mathrm{O}(3)-\mathrm{Cl}^{\prime}$ | 3.968 (2) |
| $\mathrm{O}(2)-\mathrm{O}(1)$ | 3.165 (3) | $\mathrm{O}(2)-\mathrm{O}(1)$ | 3.018 (3) |
| $\mathrm{O}(2)-\mathrm{O}\left(3^{\prime}\right)$ | 2.797 (4) | $\mathrm{O}(2)-\mathrm{Cl}$ | $3 \cdot 118$ (2) |
| $\mathrm{O}(1)-\mathrm{O}\left(3^{\prime}\right)$ | 2.445 (3) | $\mathrm{O}(1)-\mathrm{Cl}$ | 3.719 (2) |
| $\mathrm{O}(1)-\mathrm{Cl}$ | 3.278 (2) | O(1)- $\mathrm{Cl}^{\prime}$ | $3 \cdot 270$ (2) |
| $\mathrm{O}\left(3^{\prime}\right)-\mathrm{Cl}$ | 3.983 (2) | $\mathrm{Cl}--\mathrm{Cl}^{\prime}$ | $3 \cdot 374$ (1) |

Table 3 (cont.)
(ii) Angles

|  |  |
| :--- | ---: |
| $\mathrm{Mg}(1) \mathrm{octahedron}$ |  |
| $\mathrm{O}(4)-\mathrm{Mg}(1)-\mathrm{O}(3)$ | $117 \cdot 9(1)^{\circ}$ |
| $\mathrm{O}(4)-\mathrm{Mg}(1)-\mathrm{O}(2)$ | $95 \cdot 0(1)$ |
| $\mathrm{O}(4)-\mathrm{Mg}(1)-\mathrm{O}(1)$ | $87 \cdot 4(1)$ |
| $\mathrm{O}(4)-\mathrm{Mg}(1)-\mathrm{Cl}$ | $87 \cdot 5(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(1)-\mathrm{O}(2)$ | $87 \cdot 7(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $91 \cdot 8(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(1)-\mathrm{Cl}$ | $86 \cdot 1(1)$ |
| $\mathrm{O}(2)-\mathrm{Mg}(1)-\mathrm{O}(1)$ | $98 \cdot 5(1)$ |
| $\mathrm{O}(2)-\mathrm{Mg}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $76.4(1)$ |
| $\mathrm{O}(1)-\mathrm{Mg}(1)-\mathrm{Cl}$ | $87 \cdot 3(1)$ |
| $\mathrm{O}(1)-\mathrm{Mg}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $65 \cdot 1(1)$ |
| $\mathrm{O}\left(3^{\prime}\right)-\mathrm{Mg}(1)-\mathrm{Cl}$ | $104 \cdot 2(1)$ |
| $\mathrm{O}(4)-\mathrm{Mg}(1)-\mathrm{O}\left(3^{\prime}\right)$ | $149 \cdot 0(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(1)-\mathrm{O}(1)$ | $153 \cdot 4(1)$ |
| $\mathrm{O}(2)-\mathrm{Mg}(1)-\mathrm{Cl}$ | $173.8(2)$ |


| $\mathrm{Mg}(2) \mathrm{octahedron}$ |  |
| :--- | ---: |
| $\mathrm{O}(4)-\mathrm{Mg}(2)-\mathrm{O}(3)$ | $66 \cdot 4(1)^{\circ}$ |
| $\mathrm{O}(4)-\mathrm{Mg}(2)-\mathrm{O}(2)$ | $100 \cdot 1(1)$ |
| $\mathrm{O}(4)-\mathrm{Mg}(2)-\mathrm{O}(1)$ | $88 \cdot 9(1)$ |
| $\mathrm{O}(4)-\mathrm{Mg}(2)-\mathrm{Cl}$ | $89 \cdot 0(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(2)-\mathrm{O}(2)$ | $77 \cdot 2(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(2)-\mathrm{Cl}$ | $92 \cdot 3(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(2)-\mathrm{Cl}^{\prime}$ | $103 \cdot 7(1)$ |
| $\mathrm{O}(2)-\mathrm{Mg}(2)-\mathrm{O}(1)$ | $95 \cdot 5(1)$ |
| $\mathrm{O}(2)-\mathrm{Mg}(2)-\mathrm{Cl}$ | $87.2(1)$ |
| $\mathrm{O}(1)-\mathrm{Mg}(2)-\mathrm{Cl}$ | $114 \cdot 6(1)$ |
| $\mathrm{O}(1)-\mathrm{Mg}(2)-\mathrm{Cl}^{\prime}$ | $88 \cdot 1(1)$ |
| $\mathrm{Cl}--\mathrm{Mg}(2)-\mathrm{Cl}^{\prime}$ | $83 \cdot 0(1)$ |
| $\mathrm{O}(4)-\mathrm{Mg}(2)-\mathrm{Cl}$ | $154 \cdot 8(1)$ |
| $\mathrm{O}(3)-\mathrm{Mg}(2)-\mathrm{O}(1)$ | $152 \cdot 0(1)$ |
| $\mathrm{O}(2)-\mathrm{Mg}(2)-\mathrm{Cl}^{\prime}$ | $170 \cdot 2(1)$ |
|  |  |

Table 4. Bond distances, polyhedral edge lengths, and bond angles for the phosphate tetrahedron
Numbers in parentheses are estimated standard deviations in last significant figure.

| (i) Interatomic distances |  |  |  |
| :---: | :--- | :--- | :--- |
| $\mathrm{P}-\mathrm{O}(1)$ | $1.536(2) \AA$ | $\mathrm{O}(1)-\mathrm{O}(2)$ | $2.535(3) \AA$ |
| $\mathrm{P}-\mathrm{O}(2)$ | $1.521(3)$ | $\mathrm{O}(1)-\mathrm{O}(3)$ | $2.445(3)$ |
| $\mathrm{P}-\mathrm{O}(3)$ | $1.564(3)$ | $\mathrm{O}(1)-\mathrm{O}(4)$ | $2.519(3)$ |
| $\mathrm{P}-\mathrm{O}(4)$ | $1.537(2)$ | $\mathrm{O}(2)-\mathrm{O}(3)$ | $2.580(4)$ |
|  |  | $\mathrm{O}(2)-\mathrm{O}(4)$ | $2.542(3)$ |
| (ii) Angles |  | $\mathrm{O}(3)-\mathrm{O}(4)$ | $2.445(3)$ |
|  |  |  |  |
|  | $\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$ | $112.0(1)^{\circ}$ |  |
|  | $\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$ | $104.1(1)$ |  |
|  | $\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)$ | $110.1(1)$ |  |
|  | $\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$ | $113.5(1)$ |  |
|  | $\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$ | $112.4(1)$ |  |
|  | $\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$ | $104.1(1)$ |  |

This work was supported in part by the Advanced Research Projects Agency through the Materials Science Center, Cornell University.

## References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321.

Hamilton, W. (1965). Acta Cryst. 18, 502.
Klement, R. \& Haselbeck, H. (1965). Z. anorg. allgem. Chem. 336, 113.
Rea, J. R. \& Kostiner, E. (1972a). Acta Cryst. B28, 2505.

Rea, J. R. \& Kostiner, E. (1972b). Acta Cryst. B28, 2525.

Shannon, R. D. \& Prewitt, C. T. (1964). Acta Cryst. B25, 925.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558.

Acta Cryst. (1972). B28, 3464

# The Crystal and Molecular Structure of 2-Formylpyridine Selenosemicarbazone 

By A. Conde, A. López-Castro and R. Márquez<br>Departamento de Optica, Sección de Física del Centro de Investigaciones Físicas y Químicas del C.S.I.C Universidad de Sevilla, Spain

(Received 14 July 1972)
The structure of 2 -formylpyridine selenosemicarbazone, $\mathrm{SeN}_{4} \mathrm{C}_{7} \mathrm{H}_{8}$, has been determined from threedimensional X-ray photographic data. The crystals are monoclinic, space group $P 2_{1} / c$, with unit-cell dimensions $a=9.320, b=6.524$ and $c=16 \cdot 275 \AA, \beta=90.53^{\circ}$. There are four formula units in the cell. The structure was solved by the two-dimensional minimum Patterson function and the heavy atom method. It was refined by a full-matrix least-squares method to a final residual $R$ value of 0.11 for 1180 observed reflexions. The Se-C bond length of $1.83 \AA$ possesses only partial double-bond character. The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots$ Se hydrogen bonds to form dimer-like units, which are held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

## Introduction

In recent years, several organic compounds of selenium have been investigated. The molecular structures of different selenosemicarbazones have been studied by Gingras, Suprunchuk \& Bayley (1965); they described their infrared spectra with particular emphasis on the $\mathrm{Se}-\mathrm{C}$ vibration and they have studied the antifugal properties of selenosemicarbazones that were found to be generally more active than the corresponding thiosemicarbazones. French \& Blanz (1966) have studied various thiosemicarbazones and have found that all the tumour inhibitors are potentially capable of acting as tridentate $\mathrm{N}-\mathrm{N}-\mathrm{S}$ type ligands. Mathew \& Palenik (1969) reported the crystal structure of bis-(1-for-myl-isoquinolinethiosemicarbazonato)nickel(II) monohydrate and confirmed the ability of the ligand to act
as a tridentate chelate. However, the compound 2-formylthiophene thiosemicarbazone (Mathew \& Palenik, 1971) shows no tumour inhibition although the posibility of an N-N-S type chelate exists. On the other hand, French \& Blanz (1966) reported that 4-formylpyridine thiosemicarbazone shows no carcinostatic activity, whereas they found that 2 -formylpyridine thiosemicarbazone is a tumour inhibitor. Apparently the position of the thiosemicarbazone group on the pyridine nucleus dictates the biological activity of formylpyridine thiosemicarbazones. A knowledge of the conformation and bond lengths is essential for a final explanation of the requirements for biological activity in these compounds. Therefore, a crystal structure analysis of 2-formylpyridine selenosemicarbazone was carried out to correlate the molecular structure with the thiosemicarbazone analogues.


[^0]:    * Present address: Mary Baldwin College, Staunton, Virginia, U.S.A.
    $\dagger$ Author to whom correspondence should be addressed at: Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06268, U.S.A.

